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Modelling of solute transport in a mild heterogeneous porous
medium using stochastic finite element method:

Effects of random source conditions
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SUMMARY

Randomness in the source condition other than the heterogeneity in the system parameters can also be
a major source of uncertainty in the concentration field. Hence, a more general form of the problem
formulation is necessary to consider randomness in both source condition and system parameters. When
the source varies with time, the unsteady problem, can be solved using the unit response function. In the
case of random system parameters, the response function becomes a random function and depends on the
randomness in the system parameters. In the present study, the source is modelled as a random discrete
process with either a fixed interval or a random interval (the Poisson process). In this study, an attempt is
made to assess the relative effects of various types of source uncertainties on the probabilistic behaviour
of the concentration in a porous medium while the system parameters are also modelled as random fields.
Analytical expressions of mean and covariance of concentration due to random discrete source are derived
in terms of mean and covariance of unit response function. The probabilistic behaviour of the random
response function is obtained by using a perturbation-based stochastic finite element method (SFEM),
which performs well for mild heterogeneity. The proposed method is applied for analysing both the 1-D
as well as the 3-D solute transport problems. The results obtained with SFEM are compared with the
Monte Carlo simulation for 1-D problems. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Probabilistic studies of solute transport in porous media are mainly focused on predicting the
concentration uncertainty due to the heterogeneity of the governing flow and transport parameters
[1–10]. In addition to the effective parameters, the spatial variability of governing parameters which
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is modelled as random space functions, results in the prediction uncertainty of the concentration
distribution. The prediction uncertainty is represented as the variance of concentration [11–15].
Using moment equation method Andricevic [11] showed that the local dispersion tensor plays a
role in the dissipation of concentration later when favourable concentration gradient is created.
Kapoor and Kitanidis [14] also showed a similar behaviour using moment equation method and
compared it with Monte Carlo simulation. Using Lagrangian approach, Pannone and Kitanidis
[15] determined the concentration variance and they incorporated additional tensor that described
the kinetics of dilution of a plume. Fiori and Dagan [13] showed that the coefficient of variation
(COV) of concentration decreases with the decrease in the Peclet number for 2-D and 3-D transport
problems. The input/source conditions can also be spatially and/or temporally varying random
processes in a natural hydrologic system. The randomness in the source or boundary conditions
can also be a major source of uncertainty in the concentration field while analysing the solute
transport problems. The contaminant source often can be continuous or discrete in time [16].
For continuous source, the temporal correlation is described by a correlation function. On the
other hand, the discrete source is modelled as a sequence of instantaneous injections with random
mass. For the discrete source the time interval of mass injection can be either uniform or random.
Wang and Zheng [16] analysed the contaminant transport under random sources in a deterministic
groundwater system. In their model, the random source was considered either as a continuous
source with random fluctuations in time or as a discrete instantaneous source. In certain cases,
it is required to assess the relative effects of system uncertainty and source/boundary condition
uncertainty on the probabilistic behaviour of concentration. Li and Graham [17] considered the
boundary condition due to recharge as a spatial/temporal random process and analysed its effect
on the contaminant transport problem in a heterogeneous groundwater system. Using analytical
methods, they found that the spreading of the mean concentration was enhanced when the random
spatio-temporal variation of recharge was considered. Stochastic modelling of the concentration
variables with random inputs has received attention in the surface water quality literature [18, 19] as
well. Recently, Boano et al. [20] modelled stochastically the DO and BOD components in a stream
with random inputs using a semi-analytical approach for the solution of the stochastic ordinary
differential equations (ODE’s), which was computationally more efficient than the common Monte
Carlo Simulation method (MCSM).

However, for the solution of the stochastic partial differential equations (SPDE’s) when analytical
methods are not applicable due to the complicated initial and source conditions, non-uniform flow
fields and non-stationary parameters, numerical methods are required. The popular and simple
MCSM is computationally exhaustive when a few thousands of realizations are required espe-
cially for higher degrees of medium heterogeneities along with higher space–time grid resolutions.
To avoid this difficulty, alternate perturbation-based methods such as moment equation method
[21–24], stochastic finite element method (SFEM) [25–27] were proposed. In moment equation
method, the PDEs for statistical moments which are derived analytically based on stochastic manip-
ulation, are solved numerically [22, 23]. Lu an Zhang [24] proposed higher-order moment equation
method using Karhunen–Loeve expansion of the random system parameters and polynomial chaos
expansion of the hydraulic head. An iterative moment equation method was proposed by Morales-
Casique et al. [28]. This method was found to provide good results for the non-reactive solute
transport problem. In SFEM, a set of coupled algebraic equations are derived from the PDE and
the output vector (such as discretized hydraulic head or concentration) are expressed in a Taylor
series of the discretized random hydraulic conductivity, porosity, etc. [25]. The sensitivity of output
variable is solved by matrix operation in a recursive way and ensemble statistics are estimated
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using the Taylor series expansion. The higher-order SFEM is based on polynomial chaos expansion,
as proposed by Ghanem [26]. This higher-order SFEM is more accurate for strong heterogeneity
but less efficient compared to the SFEM using Taylor series expansion. The SFEM was used for
analysing multi-dimensional solute transport problems for reactive solutes with hydraulic conduc-
tivity, porosity, sorption coefficient, etc. as random fields [25, 29, 30]. The method was shown
to be efficient and accurate in simulating the mean and variance of concentration field for mild
heterogeneous case. In these cases, the source/boundary conditions are assumed as deterministic.

These alternate methods such as SFEM or moment equation method can be developed for the
probabilistic analysis of flow and solute transport in a heterogeneous porous medium when source
conditions are also a random process. In such circumstances these are used to obtain the stochastic
unit response function, which can be combined with the analytically derived expressions of the
statistical moments of the concentration of the system. In a recent study, Chaudhuri and Sekhar
[31] presented the results for a random source condition, which was modelled as a discrete process
with uniform time interval. Using SFEM the unit response function was obtained, which was
used in the analytical expressions of the statistical moments of the concentration due to random
source and random system parameters. However, when the source is to be modelled as a process
with random time interval (the Poisson process), the derivation of the expressions of mean and
covariance of concentration is relatively complicated.

In the present study, the analytical expressions of mean and covariance of concentration are
obtained when the random source is modelled as a Poisson process. SFEM is used to obtain the unit
response function for a case with random system parameters (viz hydraulic conductivity, porosity,
etc.). The results obtained by the proposed method are compared with Monte Carlo simulations for
a 1-D problem. The effect of random source condition is analysed on cases with varying levels of
uncertainty in the random system parameters. Further, the combined effect of randomness of system
parameters and source is studied on a 3-D problem, which considers a realistic and complicated
source condition [32]. It is demonstrated that the prediction uncertainty of the concentration is
enhanced due to the randomness of the time interval of the mass injection events. Results are also
presented to discuss the relative effects of source uncertainty and parametric uncertainty. Since the
local-scale dispersion parameters have influence on the variance of concentration, the combined
effects of system and source uncertainty are studied for different values of local-scale dispersion
parameters.

2. PROBLEM DESCRIPTION

The governing equation for the transport of a linearly sorbing and decaying solute in a 3-D porous
media is

(n(x) + �bkd(x))
�c(x, t)

�t
+ �

�xi

(
n(x)vi (x)c(x, t) − n(x)Di j (x)

�c(x, t)
�x j

)
+ (n(x) + �bkd(x))�d(x)c(x, t) = 0 (1)

where c(x, t) is the concentration at location x and time t . Here n(x), kd(x) and �d(x) are,
respectively, spatially varying porosity, sorption and decay coefficient. In Equation (1), v(x) is the
pore water velocity vector which is defined as v(x)=q(x)/n(x). The seepage flux vector q(x) is
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obtained using the hydraulic conductivity tensor (K(x)) and hydraulic head (h(x)), based on the
Darcy equation,

qi (x)=−Ki j (x)
�h(x)

�x j
(2)

D(x) is the hydrodynamic dispersion coefficient tensor, which is combined with the molecular
diffusion coefficient (Dm(x)). The expression for it is given as

Di jx= �(x)
(

(1 − �)
vi (x)v j (x)

v(x)
+ �v(x)�i j

)
+ Dm(x)�i j (3)

where �(x) is the longitudinal local dispersivity and � is the ratio of transverse to longitudinal local
dispersivity. Equation (1) is solved for a set of initial and boundary conditions which, in general,
are written as

c(x, 0) = c0(x) for x∈ �

c(x, t) = cb(x, t) for x∈ �1

and (
n(x)vi (x)c(x, t) − n(x)Di j (x)

�c(x, t)
�x j

)
nxi = fb(x, t) for x∈ �2 (4)

Here c0(x) is initial distribution of concentration in the domain � while cb(x, t) and fb(x, t) are,
respectively, the time-dependent specified concentration at the boundary �1 and flux at the at the
boundary �2. Further nxi is the direction cosine of the normal to the boundary surface along xi
axis.

The equation for a steady-state flow in the domain with spatially varying hydraulic conductivity
field is given by

�
�xi

(
Ki j (x)

�h(x)

�x j

)
= 0 (5)

with specified boundary conditions governing the flow in the domain represented as,

h(x)= hb(x) for x∈ �h
1 and Ki j (x)

�h(x)
�x j

nxi = qb(x) for x∈ �h
2 (6)

Using finite element method for spatial discretization and finite difference method (Crank–
Nicholson formulation) for temporal discretization the global equation for transport (Equation (1))
with specified boundary conditions (Equation (4)) is obtained as

[D1]{ct+1} = [D2]{ct } + �{ct+1
b } + (1 − �){ctb} (7)

where the matrices [D1] and [D2] can be called as transport matrices. These matrices are functions
of the vector {r} which consists of the discretized vector of velocity components, local dispersivity,
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molecular diffusion, porosity, sorption coefficient and decay rate of each element. In general, the
vector can be written as {r} = {v1 p, v2 p, v3 p, �p, Dm p, n p, kd p, �d p; p= 1, 2, . . . , N e}T, where
N e is the number of elements used to discretize the domain. Thus, the nodal vectors of dependent
variables ({ct+1} and {ct }) become the function of the discretized random parameters. The global
equation for the flow (Equation (5)) for a given head and flux boundary conditions (Equation (6))
is obtained as,

[K ]{h}= {h0} (8)

Here [K ] is the global hydraulic conductivity matrix in the flow equation. The velocity is obtained
for a specified hydraulic head gradient. The i th component of seepage flux of pth element is
obtained by taking average of that at all of the Gauss points (xk , for k = 1, . . . , NG , where NG is
the number of Gauss points) and is given as

qi p =− 1

NG
Ki j p

NG∑
k=1

�Nl(x)
�x j

∣∣∣∣∣
xk

hl =− 1

NG
Kp

NG∑
k=1

�Nl(x)
�xi

∣∣∣∣∣
xk

hl (9)

For isotropic cases the hydraulic conductivity tensor becomes a scalar quantity (Kp). Using the
relation between seepage flux and flow velocity (qi p = n pvi p) the product n pDi j p can be written
in terms of water flux as

n pDi j p = �p

(
(1 − �)

qi pq j p

qp
+ �qp�i j

)
+ n pDm p�i j (10)

where the resultant seepage flux (qp = (
∑3

i=1 qi
2
p)

1/2).
Since the seepage flux (Equation (9)) or flow velocity is used as a system parameter for the

transport problem (Equation (1)), the transport matrices (D1) and (D2) in Equation (7) are functions
of the velocity vector. Thus, the transport matrices are related to the random hydraulic conductivity.

3. SFEM FORMULATION

In SFEM, the matrices (D1 and D2) and nodal vectors of dependent variable ({ct+1} and {ct }) are ex-
panded using the Taylor series about the mean value of the random parameters (r ′

p, p=1, 2, . . . , Nr ).

[D1] = [D1] + [D1]′ = [D1]+
Nr∑
p=1

[D1](I)rp r
′
p and

[D2] = [D2] + [D2]′ = [D2]+
Nr∑
p=1

[D2](I)rp r
′
p

(11)

where [D1](I)rp = �[D1]/�rp and [D2](I)rp = �[D2]/�rp. Similarly, the concentration can be expanded
in Taylor series about the mean value of the random parameters and can be expressed as follows:

{ct+1} = {ct+1}(0) +
Nr∑
p=1

{ct+1}(I)rp r
′
p + 1

2

Nr∑
p=1

Nr∑
q=1

{ct+1}(II)rprq r
′
pr

′
q · · · (12)
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After substituting Equations (12) and (11) into Equation (7), the various orders of derivatives of
concentration are obtained as,

{ct+1}(0) =[D1]−1([D2]{ct }(0) + �{ct+1
b } + (1 − �){ctb}) (13)

{ct+1}(I)rp = [D1]−1(−[D1](I)rp {ct+1}(0) + [D2](I)rp {ct }(0) + [D2]{ct }(I)rp ) (14)

{ct+1}(II)rprq = [D1]−1(−[D1](I)rp {ct+1}(I)rq − [D1](I)rq {ct+1}(I)rp

+[D2](I)rp {ct }(I)rq + [D2](I)rq {ct }(I)rp + [D2]{ct }(II)rprq ) (15)

By taking the expectation of Equation (12) and neglecting the higher-order terms, the second-order
accurate mean concentration is obtained as

{ct+1} = {ct+1}(0) + 1

2

Nr∑
p=1

Nr∑
q=1

{ct+1}(II)rprq r
′
pr

′
q (16)

Under the approximation that r ′
pr

′
q − r ′

pr
′
q ≈ 0, the first-order accurate covariance matrix of the

concentration at any two different time instances (t1 and t2) is obtained as

[CV]cc =
Nr∑
p=1

Nr∑
q=1

{ct1}(I)rp {ct2}(I)rq
T
r ′
pr

′
q (17)

This approximation is valid for the mild heterogeneity of the random system parameters.
The covariance matrix of the random parameters (which are piece-wise linear inside an element)

is derived from the given variances and spatial correlation functions for the random fields. For
solving the transport problem, the statistical moments of the flow velocity need to be derived from
the statistical moments of the hydraulic conductivity. The derivation of this is presented in the
Appendix. In this study all the flow and transport parameters, which are considered as random
fields, are assumed to follow a log normal distribution since they take positive values and
also vary considerably. However, this assumption is not a limitation for the proposed SFEM.
The random fields are assumed as statistically homogeneous and are described by a Gaussian
(squared exponential)-type correlation function. However, it may be noted that for specific ap-
plications, experimentally derived correlation functions if available can also be used in the
SFEM. The correlation coefficient between the log parameters of any two points is given by
�(x)= exp(−(x1/�1)2 − (x2/�2)2 − (x3/�3)2), where �1, �2 and �3 are the correlation lengths.
The covariance matrix for a random element parameters is determined from the correlation function
and the variances using the local averaging method [33].

4. RANDOM SOURCE CONDITION

In the present study a contaminant source, which is discrete in time is considered. The source is
modelled as a sequence of instantaneous mass injections with random amount. For the discrete
source the time interval of mass injection may be uniform (Figure 1(a)) or random (Figure 1(b)).
In addition, the amount of input mass can also vary with the time. The total amount of cumulative
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Figure 1. The random mass release at: (a) uniform time interval and (b) random time interval.

mass of contaminant injected into the porous medium is the sum of random number of incidents:∑M(t)
k=1 cAk , where M(t) is the number of mass injections that occurred during the interval [0, t].

Here cAk is the amount of random mass injected at time �k . In this study it is also assumed that the
magnitude of the mass released at each time follows a normal distribution, however, the formulation
can consider any distribution. In the present work, for the solute transport problem under the general
assumptions, the concentration can be obtained as a random sum of the impulse/response function,
which is expressed as

c(x, t) =
M(t)∑
k=1

cAkGc(x, t, �k) (18)

In the above expression, Gc(x, t, �k) is a response function of the concentration due to a unit
magnitude of mass of solute which is applied at time t = 0 following a given set of boundary
conditions. For some cases with simple boundary conditions, the unit response function can be
derived analytically. In the case of complicated system and boundary conditions, any numerical
method is adopted to obtain the unit response function in the form of a discretized array instead
of a closed-form function. Since the response function must satisfy the condition: Gc(x, t, �) = 0
for t<�, in Equation (18), M(t) can be replaced by M(T ) where T is the total time of simulation.
Since the output concentration here is a nonlinear function of system parameters, a truncated
Taylor series expansion is used for the stochastic analysis of output concentration while incorpo-
rating the uncertainty in the system parameters. When numerical methods are used for the solution
with discretization in space and time, the response function is obtained as a vector of concentra-
tion at all nodes {Gc(t, �k)}. The concentration at i th node due to the multiple sources can be
expressed as

ci (t) =
M(T )∑
k=1

cAkGci (t, �k) (19)

When the governing transport parameters are also random fields, the unit response function in
Equation (19) can be expressed as,

Gci (t, �) = (Gci (t, �))
(0) +

Nr∑
p=1

(Gci (t, �))
(I)
rp r

′
p + 1

2

Nr∑
p=1

Nr∑
q=1

(Gci (t, �))
(II)
rprq r

′
pr

′
q (20)
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The mean of the response function is written as

Gci (t, �) = (Gci (t, �))
(0) + 1

2

Nr∑
p=1

Nr∑
q=1

(Gci (t, �))
(II)
rprq r

′
pr

′
q (21)

and the expectation of the product of the response function is written as

Gci (t1, �1)Gcj (t2, �2) = (Gci (t1, �1))
(0)(Gcj (t2, �2))

(0) + 1

2
(Gci (t1, �1))

(0)

×
(

Nr∑
p=1

Nr∑
q=1

(Gcj (t2, �2))
(II)
rprq r

′
pr

′
q

)

+ 1

2

(
Nr∑
p=1

Nr∑
q=1

(Gci (t1, �1))
(II)
rprq r

′
pr

′
q

)
(Gcj (t2, �2))

(0)

+
Nr∑
p=1

Nr∑
q=1

((Gci (t1, �1))
(I)
rp (Gcj (t2, �2))

(I)
rq )r ′

pr
′
q (22)

In this study, SFEM is used to compute Gci (t, �) and Gci (t1, �1)Gcj (t2, �2) numerically considering
the source as a unit pulse. The random transport parameters are usually uncorrelated with the source
conditions, i.e. cAk and r ′

p are uncorrelated. Since the random pulse inputs of concentration at two

different times are independent, it may be noted that cAk cAl = (cA)2 + 	2cA�kl .

4.1. Uniform time interval case

In this case the mass releases are assumed to be at uniform time intervals which are fixed and
known. Hence, cAk (k = 1, 2, . . . , M(T )) are random variables but �k (k = 1, 2, . . . , M(T )) are
deterministic. Taking the expectation of Equation (20) the mean concentration is obtained as

ci (t) = E[ci (t)] = E

[
M(T )∑
k=1

cAkGci (t, �k)

]
= cA A (23)

where

A=
M(T )∑
k=1

Gci (t, �k) =
M(T )∑
k=1

(
(Gci (t, �k))

(0) + 1

2

Nr∑
p=1

Nr∑
q=1

(Gci (t, �k))
(II)
rprq r

′
pr

′
q

)
(24)

The expression for the expectation of the product of concentration at two different times and
locations is written as

ci (t1)c j (t2) = E[ci (t1)c j (t2)] = E

[
M(T )∑
k=1

M(T )∑
l=1

cAk cAl Gci (t1, �k)Gcj (t2, �l)

]
(25)

Due to the fact that cAk cAl = (cA)2 + 	2cA�kl , the above equation is decomposed as

ci (t1)c j (t2) = 	2cA
M(T )∑
k=1

Gci (t1, �k)Gcj (t2, �k) + (cA)2
M(T )∑
k=1

M(T )∑
l=1

Gci (t1, �k)Gcj (t2, �l) (26)
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In a simplified manner Equation (26) can be written as

⇒ ci (t1)c j (t2) = 	2cA A1 + (cA)2A2 (27)

Here the terms A1 and A2 are obtained by substituting the expression of Gci (t1, �k)Gcj (t2, �l) from
Equation (22) in the first and the second terms in the right-hand side of Equation (26), respectively.
Considering k = l the coefficient A1 in the first term is obtained as

A1 =
M(T )∑
k=1

(
(Gci (t1, �k))

(0)(Gcj (t2, �k))
(0) + 1

2
(Gci (t1, �k))

(0)

(
Nr∑
p=1

Nr∑
q=1

(Gcj (t2, �k))
(II)
rprq r

′
pr

′
q

)

+ 1

2

(
Nr∑
p=1

Nr∑
q=1

(Gci (t1, �k))
(II)
rprq r

′
pr

′
q

)
(Gcj (t2, �k))

(0)

)

+
Nr∑
p=1

Nr∑
q=1

((Gci (t1, �k))
(I)
rp (Gcj (t2, �k))

(I)
rq )r ′

pr
′
q (28)

Substituting the expression of Gci (t1, �k)Gcj (t2, �l) in the second term of Equation (26) and then
rearranging based on possible decoupling of the double summation, the coefficient A2 is obtained
as

A2 =
(
M(T )∑
k=1

(Gci (t1, �k))
(0)

)(
M(T )∑
k=1

(Gcj (t2, �k))
(0)

)
+ 1

2

(
M(T )∑
k=1

(Gci (t1, �k))
(0)

)

×
(
M(T )∑
k=1

(
Nr∑
p=1

Nr∑
q=1

(Gcj (t2, �k))
(II)
rprq r

′
pr

′
q

))
+1

2

(
M(T )∑
k=1

(
Nr∑
p=1

Nr∑
q=1

(Gci (t1, �k))
(II)
rprq r

′
pr

′
q

))

×
(
M(T )∑
k=1

(Gcj (t2, �k))
(0)

)
+

M(T )∑
k=1

M(T )∑
l=1

(
Nr∑
p=1

Nr∑
q=1

(Gci (t1, �k))
(I)
rp (Gcj (t2, �l))

(I)
rq r

′
pr

′
q

)
(29)

The cross covariance for concentration at two different times and locations is obtained as

c′
i (t1)c

′
j (t2) = ci (t1)c j (t2) − ci (t1)c j (t2)

= 	2cA A1 + (cA)2A2 − (cA A)2

= 	2cA A1 + (cA)2
M(T )∑
k=1

M(T )∑
l=1

(
Nr∑
p=1

Nr∑
q=1

(Gci (t1, �k))
(I)
rp (Gcj (t2, �l))

(I)
rq r

′
pr

′
q

)

= 	2cA A1 + (cA)2
M(T )∑
k=1

M(T )∑
l=1

CVGi j (t1 − �k, t2 − �l) (30)

where CVGi j (t1 − �k, t2 − �l) is the covariance function of the concentration with time due to

unit pulse. In deriving the random component of the concentration, the term r ′
pr

′
q − r ′

pr
′
q has
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been ignored, which results in the first-order accurate covariance matrix of concentration. The

standard deviation of concentration, 	ci (t) =
√
ci (t)ci (t) increases due to additive effect of the

source uncertainty. If the unit response function at any location in the domain is obtained using
SFEM for the specified unit pulse source condition, the mean and covariance of concentration
for a random source condition at that location can be obtained using Equations (23) and (30),
respectively. These expressions of mean and covariance of concentration are also applicable when
the source is a random continuous process. The covariance of source concentration at different
times cAk cAl is obtained from the known mean and autocorrelation function of the random source
condition.

4.2. Random time interval

In the case of random time interval between injection of source events, the statistical moments
are obtained using the probability density function of the random time interval. When the time
intervals follow exponential distribution the random process is known as Poisson process. The
output variable, i.e. concentration at any specific location is called a filtered Poisson process. The
probabilistic structure of the filtered Poisson process may be derived by using the characteristic
functional [34, pp. 87–89], when the response function is deterministic. When the system parameters
are assumed to vary randomly in space, the derivation of the statistics through the characteristic
functional becomes very complicated. In the present study, the expressions of the mean and the
cross covariance of the filtered Poisson process are derived directly using the probability density
function of the random time interval.

In this section the source is modelled as a Poisson process, i.e. the arrival time of the random
mass releases (�1, �2, �3, . . . where 0<�1<�2<�3< · · ·), are random variables. The joint probabi-
lity density function of the random vector ({�}m = [�1, �2, �3, . . . , �m]T) is given as

p({�}m) = exp

(∫ �m

0
�p(�) d�

)
m∏

k=1
�p(�k) (31)

and the marginal probability density function of �k follows the Gamma distribution, which is
given as

p(�k) = �p(�k) exp

(∫ �k

0
�p(�) d�

)
(
∫ �k
0 �p(�) d�)k−1

(k − 1)! (32)

Here �p(�) is the time-varying intensity of the Poisson events, i.e. the expected number of
events of mass injection per unit of time. In the case when the number of events in the in-
terval [0, T ] is exactly the same as m, the conditional probability density function of the arrival
times, (0<�1<�2<�3< · · · <�m�T ), is given as

p({�}m |M(T ) =m) = m!
(
∫ T
0 �p(�) d�)m

m∏
k=1

�p(�k) (33)

and the conditional marginal probability density fluctuation of �k follows the Beta distribution,
which is given as

p(�k |M(T ) =m) = �p(�k)
(
∫ �k
0 �p(�) d�)k−1

(k − 1)!
(
∫ T
�k

�p(�) d�)m−k

(m − k)!
m!

(
∫ T
0 �p(�) d�)m

(34)
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It is assumed that the instantaneous amount of mass release follows the normal distribution. The
mean concentration can be derived as

ci (t)=E[ci (t)]=E

[
M(T )∑
k=1

cAkGci (t, �k)

]
=

∞∑
m=0

PM (m, T )E

[
m∑

k=1
cAkGci (t, �k)

∣∣∣∣M(T )=m

]
(35)

In the above expression PM (m, T ) is the probability density function of the number of releases
of solute mass in the time interval T . The conditional expectation on the right-hand side of the
above equation can be simplified and can be given as follows:

E

[
m∑

k=1
cAkGci (t, �k)

∣∣∣∣M(T ) =m

]
= E

[
m∑

k=1
E[cAkGci (t, �k)]

∣∣∣∣M(T ) =m

]

= cAE

[
m∑

k=1
Gci (t, �k)

∣∣∣∣M(T ) =m

]
(36)

Using the joint conditional pdf of the arrival time, the conditional expectation is obtained as

E

[
m∑

k=1
Gci (t, �k)

∣∣∣∣M(T ) =m

]

=
∫ T

0
d�1

∫ T

�1
d�2 · · ·

∫ T

�m−1

m∑
k=1

Gci (t, �k)
m!∏m

l=1 �p(�l)

(
∫ T
0 �p(�) d�)

m

d�m

= 1

m!
∫ T

0
d�1

∫ T

0
d�2 · · ·

∫ T

0

m∑
k=1

Gci (t, �k)
m!∏m

l=1 �p(�l)

(
∫ T
0 �p(�) d�)m

d�m

=
m∑

k=1

∫ T

0
d�1

∫ T

0
d�2 · · ·

∫ T

0
Gci (t, �k)

∏m
l=1 �p(�l)

(
∫ T
0 �p(�) d�)m

d�m (37)

Since the function Gci (t, �k) is same for all k, the integral
∑m

k=1 Gci (t, �k) is symmetric about its
arguments, (�1, �2, �3, . . . , �m). Due to this fact the domain of the multiple integration has been
transformed to a m-dimensional hyper-cube. The integration with respect to each variable can be
decoupled. It can be noted that for any k in the last expression of Equation (37), the integration with
respect to �l; l �= k boils down to

∫ T
0 �p(�) d� and the integration with respect to �k is similar to∫ T

0 �p(�)Gci (t, �) d�. Thus, in the above expression the integration is invariant of k. In a simplified
manner the conditional expectation can be expressed as

E

[
m∑

k=1
Gci (t, �k)

∣∣∣∣M(T ) =m

]
=

m∑
k=1

(
∫ T
0 �p(�) d�)m−1

∫ T
0 �p(�)Gci (t, �) d�

(
∫ T
0 �p(�) d�)m

= mA∫ T
0 �p(�) d�

(38)

where

A=
∫ T

0
�p(�)Gci (t, �) d� =

∫ T

0
�p(�)

(
(Gci (t, �))

(0) + 1

2

Np∑
p=1

Nq∑
q=1

(Gci (t, �))
(II)
rprq r

′
pr

′
q

)
d� (39)
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Substituting the probability

P(m, T ) = 1

m! exp
(

−
∫ T

0
�p(�) d�

)(∫ T

0
�p(�) d�

)m

and the conditional expectation (Equation (38)) in Equation (35), the mean concentration is
obtained as

ci (t) =
∞∑

m=0

1

m! exp
(

−
∫ T

0
�p(�) d�

)(∫ T

0
�p(�) d�

)m
mcAA∫ T

0 �p(�) d�

= (cA A) exp

(
−
∫ T

0
�p(�) d�

) ∞∑
m=1

(
∫ T
0 �p(�) d�)m−1

(m − 1)! = cA A (40)

The expectation of the product of the concentration at two different times and locations can be
written as

ci (t1)c j (t2) = E[ci (t1)c j (t2)]= E

[
M(T )∑
k=1

cAkGci (t1, �k)
M(T )∑
l=1

cAl Gc j (t2, �l)

]

=
∞∑

m=0
PM (m, T )E

[
m∑

k=1

m∑
l=1

cAk cAl Gci (t1, �k)Gcj (t2, �l)

∣∣∣∣M(T ) =m

]
(41)

In order to derive the expectation of the term in expression (Equation (41)) for k = l, both �k and
�l have to be treated as a single random variable and similarly for cAk and cAl . The expectation
of the summation of the terms where k = l can be derived following the similar steps as discussed
for mean concentration. The expectation is written as

E

[
m∑

k=1
c2Ak

Gci (t1, �k)Gcj (t2, �k)

∣∣∣∣M(T ) =m

]

=E

[
m∑

k=1
E[c2Ak

Gci (t1, �k)Gcj (t2, �k)]
∣∣∣∣M(T ) =m

]

=((cA)2 + 	2cA)E

[
m∑

k=1
Gci (t1, �k)Gcj (t2, �k)

∣∣∣∣M(T ) =m

]

=((cA)2 + 	2cA)
mA1∫ T

0 �p(�) d�
(42)

Here it can be proved following the same approach as discussed for the mean concentration that
the conditional expectation is also independent of k and the coefficient A1 is written as,

A1 =
∫ T

0
�p(�)Gci (t1, �)Gcj (t2, �) d� (43)
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After substituting the expression of Gci (t1, �)Gcj (t2, �) from Equation (22), A1 can be explicitly
written as

A1 =
∫ T

0
�p(�)

(
(Gci (t1, �))

(0)(Gcj (t2, �))
(0) + 1

2
(Gci (t1, �))

(0)

×
(

Nr∑
p=1

Nr∑
q=1

(Gcj (t2, �))
(II)
rprq r

′
pr

′
q

)

+ 1

2

(
Nr∑
p=1

Nr∑
q=1

(Gci (t1, �))
(II)
rprq r

′
pr

′
q

)
(Gcj (t2, �))

(0)

+
Nr∑
p=1

Nr∑
q=1

((Gci (t1, �))
(I)
rp (Gcj (t2, �))

(I)
rq )r ′

pr
′
q

)
d� (44)

In Equation (41) the terms where k �= l, �k and �l should be treated as two different random
variables. The conditional expectation of these terms is derived as follows:

E

[
m∑

k=1

m∑
l=1;l �=k

cAk cAl Gci (t1, �k)Gcj (t2, �l)

∣∣∣∣∣M(T ) =m

]

=(cA)2E

[
m∑

k=1

m∑
l=1;l �=k

Gci (t1, �k)Gcj (t2, �l)

∣∣∣∣∣M(T ) =m

]
(45)

It can be noted that the number of terms within the double summation in Equation (45) is m(m−1).
Using a similar approach as shown in Equation (37) for the multiple integration, the conditional
expectation in the above equation can be derived. It can also be shown that the multiple integration
of each terms becomes invariant to both k and l. Hence, the expectation of the summation of
m(m − 1) terms can be expressed as

(cA)2E

[
m∑

k=1

m∑
l=1;l �=k

Gci (t1, �k)Gcj (t2, �l)

∣∣∣∣∣M(T ) =m

]
= (cA)2

m(m − 1)A2

(
∫ T
0 �p(�) d�)2

(46)

where A2 is given as

A2 =
∫ T

0

∫ T

0
�p(�1)�p(�2)Gci (t1, �1)Gcj (t2, �2) d�1 d�2 (47)

After substituting the expression of Gci (t1, �1)Gcj (t2, �2) from Equation (22) and decoupling the
double integration for the terms wherever possible, A2 can be explicitly written as

A2 =
(∫ T

0
�p(�)(Gci (t1, �))

(0) d�

)(∫ T

0
�p(�)(Gcj (t2, �))

(0) d�

)

+ 1

2

(∫ T

0
�p(�)(Gci (t1, �))

(0) d�

)
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×
(∫ T

0
�p(�)

(
Nr∑
p=1

Nr∑
q=1

(Gcj (t2, �))
(II)
rprq r

′
pr

′
q

)
d�

)

+ 1

2

(∫ T

0
�p(�)

(
Nr∑
p=1

Nr∑
q=1

(Gci (t1, �))
(II)
rprq r

′
pr

′
q

)
d�

)

×
(∫ T

0
�p(�)(Gcj (t2, �))

(0) d�

)
+
∫ T

0

∫ T

0
�p(�1)�p(�2)

×
Nr∑
p=1

Nr∑
q=1

((Gci (t1, �1))
(I)
rp (Gcj (t2, �2))

(I)
rq r

′
pr

′
q) d�1 d�2 (48)

Using Equations (42)–(48), the Equation (41) can be simplified as

ci (t1)c j (t2) =
∞∑

m=0

1

m! exp
(

−
∫ T

0
�p(�) d�

)(∫ T

0
�p(�) d�

)m

×
(
m((cA)2 + 	2cA)A1∫ T

0 �p(�) d�
+ m(m − 1)(cA)2A2

(
∫ T
0 �p(�) d�)2

)
= ((cA)2 + 	2cA)A1 + (cA)2A2 (49)

The cross covariance of the concentration in this case is obtained as

c′
i (t1)c

′
j (t2) = ci (t1)c j (t2) − ci (t1)c j (t2) = ((cA)2 + 	2cA)A1 + (cA)2A2 − (cA A)2

= ((cA)2 + 	2cA)A1 + (cA)2
∫ T

0

∫ T

0
�p(�1)�p(�2)

×
Nr∑
p=1

Nr∑
q=1

((Gci (t1, �1))
(I)
rp (Gcj (t2, �2))

(I)
rq r

′
pr

′
q) d�1 d�2

= ((cA)2 + 	2cA)A1 + (cA)2
∫ T

0

∫ T

0
�p(�1)�p(�2)CVGi j

× (t1 − �1, t2 − �2) d�1 d�2 (50)

The additional terms in the expressions of the mean of the concentration (Equations (23) and (40))
and the cross covariance of the concentration (Equations (30) and (50)) are derived using SFEM
based on the covariance of random parameters and derivatives of concentration with respect to
discretized random parameters. These terms include the effect of uncertainty in the governing
parameters on the probabilistic structure of the concentration. The terms in the expressions of
the statistical parameters of the concentration due to uniform and random time intervals are very
similar. The summation in the case of uniform time intervals are replaced by integration with
respect to time.
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In the MCSM, for each realization the response function (Gci (t, 0)) due to a unit solute mass
injection is obtained using a generated random vector of the discretized hydraulic conductivity
field. A sequence of random solute mass and associated injection times are generated based on
the specified statistical parameters of the source, to compute the concentration using Equation
(18). The ensemble mean and standard deviation of the concentration are estimated from 10 000
realizations.

5. RESULTS AND DISCUSSION

5.1. 1-D problem

The model formulation is applied to a problem of transport of solutes in a 1-D porous media
column. Here, a solute of unit concentration is assumed to be injected instantaneously and the
transport of solute is assumed to be due to advection and dispersion. For numerical simulation
all variables are made dimensionless with respect to the height of the column (H) and pore
water velocity (vd). The dimensionless concentration of the pollutant at dimensionless depth
(x3 = x̃3/H) and dimensionless time (t = vd t̃/H) is defined as c(x3, t) = c̃(x̃3, t̃)/c0. Further,
� = �̃/H , Dm(x3) = D̃m(x̃3)/(vd H) are, respectively, the dimensionless local-scale dispersivity,
diffusion coefficient. Here ‘∼’corresponds to the dimensional quantity. The solute is injected at
x = 0.1 and the concentration is measured at x = 0.2. The velocity for the deterministic system
(homogeneous hydraulic conductivity field) is taken as vd = 1.0. The values of the governing
parameters are chosen as n = 0.4, �bkd = 0.2, � = 0.0025 and Dm = 0.0025. The correlation length
is taken as � = 0.01. The uncertainty in the random parameters is quantified in terms of COV. The
study has been performed for a range of COV of random system parameters. A constant head
boundary conditions at the two ends of the column have been used for this 1-D problem. The
spatial distribution of the mean and standard deviation of concentrations due to a single pulse
input in a heterogeneous column (COVK = 0.4) are presented in Figure 2. Figure 2(a) shows
that the solute movement is slow for the heterogeneous case in comparison to the homogeneous
case, since the effective velocity is less for the modelled random hydraulic conductivity field.
The break through for the mean concentration obtained by SFEM and MCSM match well. The
plot of standard deviation of concentration with time (Figure 2(b)) shows two peaks associated
with rapid changes in the mean concentration. This is expected since 	Gc is computed from the
derivative of c.
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Figure 2. Comparison of mean and standard deviation of concentration obtained using SFEM
and MCSM for unit mass injected.
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Figure 3. Comparison of mean of concentration obtained using SFEM and MCSM for
various types of source conditions.

Based on the time interval and the amount of solute mass injected, the random source condition
modelled is categorized into four cases as follows:

Case A—uniform time interval with fixed mass (COVcA = 0.0): deterministic source.
Case B—uniform time interval with random mass (COVcA = 0.5): random source.
Case C—random time interval with fixed mass (COVcA = 0.0): random Poisson-type source.
Case D—random time interval with random mass (COVcA = 0.5): random Poisson-type source.
The expected number of mass injections per unit time is taken as same for all the cases,

�p = 200. The expressions in (Equations (23) and (40)) show that the mean concentration is
independent of the randomness in the amount of solute mass injected. It is shown in Figures 3(a)
and (b) that the mean concentration is same for both uniform and random time interval cases.
If the time intervals between source injections are assumed to be large, then the mean break
through of concentration shows oscillations. Since the theoretical analysis for the deterministic
system with random source condition is exact, the results match with Monte Carlo simulation.
As the area under the mean concentration break through (Figure 2(a)) is higher, the steady-state
mean concentration happens to be higher for the heterogeneous system. The standard deviation
of concentration for the deterministic source (Figure 4(a)) shows a dip similar to the single pulse
input due to the random hydraulic conductivity field (Figure 2(b)). It increases monotonically
with time as shown in Figure 4(b) when random amount of solute is injected at uniform time
intervals into a homogeneous column. The error with standard deviation is found to be more
for the case of random conductivity field. Figures 4(c) and (d) show that the standard deviation
becomes significantly higher when the source is modelled as a Poisson process, i.e. the time
interval follows an exponential distribution. Since the randomness in source injection dominates,
the non-monotonic behaviour due to the random hydraulic conductivity, is masked. Figure 5 shows
that the concentration variance increases with COV of hydraulic conductivity. The increase in
variance due to randomness in the solute mass injected is contributed by the term (	2cA A1) in the
expressions of covariance (Equations (30) and (50)). Comparing Equations (30) and (50), it is
interestingly observed that an additional term ((cA)2A1) has appeared in Equation (50) due to the
Poisson process. The impact of this term is quite high as seen in Figure 5. A similar effect due
to various types of source conditions are observed as shown in Figure 5 for the simulations with
MCSM for COVK = 0.4. In addition to this, comparisons have been made for the case of multiple
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Figure 4. Comparison of standard deviation of concentration obtained using SFEM and
MCSM for various types of source conditions.
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Figure 5. Variance of concentration with respect to the COV of hydraulic conductivity for Cases A–D.

random parameters (hydraulic conductivity, porosity, local dispersivity, molecular diffusion and
sorption coefficient). In this case hydraulic conductivity, porosity, local dispersivity and diffusion
coefficient are considered as positively correlated while sorption coefficient is negatively correlated.
The reason for choosing a case with such correlation among the parameters is that it may generate
higher prediction uncertainty. For the case of the perfect correlation (either positive or negative)
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Figure 6. Variance of concentration with respect to the COV of random system parameters for Cases A–D.

case all random parameters follow the same correlation function and the correlation length. For
the case of multiple random parameters (i.e. COVK ,n,�,Dm ,kd =COVsystem = 0.4.) the prediction
uncertainty increases. However, for this case the comparison of results with MCSM becomes
relatively inferior (Figure 6).

5.2. 3-D problem

The methodology developed in Section 4 combining SFEM with random source conditions is
applied to the problem of solute transport in a 3-D heterogeneous medium with random solute
source located at the top domain of the soil system in a landfill problem as illustrated in Figure 7.
For the flow problem a constant head boundary condition is used along the direction of flow with
no flow conditions in the other directions. It is also assumed that a vertical recharge (q) is taking
place through the landfill. The solute from this source at the top of the domain is assumed to get
transported through the underlying soil layers by both vertical recharge and horizontal subsurface
flow. The governing parameters for flow and transport are assumed to vary randomly in space. A
typical mixed flux boundary condition is used here, which is used for the 1-D vertical transport
of leachate from a source [32]. It is assumed that the source has an initial specified mass of
contaminant with a known concentration (c0). The total mass of pollutant in the source decreases
in time as it leaches down. Hence, a time-varying concentration boundary condition has to be
applied at the source location. The top boundary condition for this problem may be given as

c(x, t) = c0 − 1

H f

∫ t

0
f (x, �) d� for − lx1

2
�x1�

lx1
2

, − lx2
2

�x2�
lx2
2

and x3 = 0 (51)

This boundary condition can also be rewritten as

f (x, t) =−H f
�c(x, t)

�t
and c(x, 0) = c0

for − lx1
2

�x1�
lx1
2

, − lx2
2

�x2�
lx2
2

and x3 = 0 (52)
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Figure 7. Schematic diagram of a 3-D domain in a landfill problem with a
source at the top surface of the soil layer.

where the solute flux is expressed as, f (x, �) = (n(x)vi (x)c(x, t) − n(x)Di j (x)�c(x, t)/�x j )nxi .
At the top surface nx1 = 0 and nx2 = 0. In Equation (52), H f is the height of the leachate source.
It is considered that soil is stratified below the source with upper layer close to the source
having a lower permeability while the bottom layer having a higher permeability. The flow field
in this problem becomes non-uniform due to the constant continuous recharge from the pollutant
source combined with the lateral groundwater flow in the permeable layer. In this study, hydraulic
conductivity, porosity, local dispersivity, molecular diffusion and decay coefficient are considered
as positively correlated while sorption coefficient is negatively correlated. The mean and covari-
ance of the random flow field are derived from the random hydraulic conductivity field. Along
with covariance matrices of the other random fields, the covariance of velocity is also used for
the probabilistic analysis of contaminant transport. A square contaminant source of dimension
lx1 = lx2 = l is assumed to be located in an aquifer. The governing equation (1), the boundary con-
ditions and the parameters are made dimensionless with respect to the size of the source (l) and
the horizontal velocity of flow (vd ). Here c(x, t) = c̃(x̃, t̃)/c0 is the dimensionless concentration of
the pollutant at a dimensionless distance x= x̃/ l, a dimensionless time (t = vd t̃/ l) and c0 is the
concentration at the top of the soil. Further, v(x)= ṽ(x̃)/vd , �(x) = �̃(x̃)/ l, Dm(x)= D̃m(x̃)/(vdl),
�d(x) = �̃d(x̃)l/vd and q = q̃/vd are, respectively, the dimensionless velocity of flow, dispersivity,
molecular diffusion, decay coefficient and recharge at the top. Here vd is the horizontal velocity
of flow, for a deterministic case without any recharge. Following numerical values of parame-
ters are chosen for solving the 3-D problem: n = 0.4, kd = 0.5, �d = 0.4, q = 0.5, �= 0.1. The
dimensionless thickness of the upper layer with low permeability is assumed as Lx3 = 0.5 while
the thickness of the bottom layer with high permeability is taken as, Hb = 0.01. The horizontal
dimensionless size of the domain is 11× 6.5. The height of the leachate source and ratio of con-
ductivity are, respectively, taken as H f = 0.2 and RK = 100. In this study, the correlation scales
along the horizontal plane are assumed to be the same (i.e. �1 = �2 = �h). The horizontal correla-
tion scale (�h) is considered much larger in comparison to the vertical correlation scale (�3). The
dimensionless correlation lengths with respect to the size of the source are chosen: �h = 2.0 and
�v = 0.5. In this study the results are obtained for the following values of COVs of the system
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parameters:
Case 1: COVK = 0.0, COV
 = 0.0, COV� = 0.0, COVDm = 0.0, COVKd = 0.0 and COV�d = 0.0,

� = 0.2, Dm = 0.2.
Case 2: COVK = 0.4, COV
 = 0.4, COV� = 0.4, COVDm = 0.4, COVKd = 0.4 and COV�d = 0.4,

� = 0.2, Dm = 0.2.
Case 3: COVK = 1.0, COV
 = 0.4, COV� = 0.4, COVDm = 0.4, COVKd = 0.4 and COV�d = 0.4,

� = 0.2, Dm = 0.2.
Case 4: COVK = 0.0, COV
 = 0.0, COV� = 0.0, COVDm = 0.0, COVKd = 0.0 and COV�d = 0.0,

� = 0.1, Dm = 0.1.
Case 5: COVK = 1.0, COV
 = 0.4, COV� = 0.4, COVDm = 0.4, COVKd = 0.4 and COV�d = 0.4,

� = 0.1, Dm = 0.1.
Since the dispersion parameters have large impact on the variance of concentration in hetero-

geneous porous media, two different sets of � and Dm have been chosen. The present FEM-based
numerical methods cannot perform for very low dispersion parameters and hence moderate values
are used. In addition to this, the solute transport from a landfill through the underneath porous
media is sometimes dispersion dominated. The mean and the standard deviation of the concentra-
tion at various locations in the domain for a unit concentration pulse condition are the source are
computed using SFEM. It may be noted that these means and standard deviations are functions of
the random system parameters. Figure 8 shows a typical plot of the temporal variation of the mean
and standard deviations of concentration due to unit pulse at locations: P1(0, 0, 0), P2(0, 0,−0.5),
P3(2.5, 0,−0.5), P4(−1.0, 0,−0.5) and P5(0, −1.0,−0.5) (marked in Figure 7). For the locations
away from the source (P2, P3, P4 and P5) both the mean and the standard deviation of concen-
tration are initially zero. The behaviours of the mean and the standard deviation of concentration
are observed to be quite similar to the 1-D problem. It is observed that the concentration at the
location away from the source is largely influenced by the heterogeneity of the system parameters.
Since the spatial variability of the hydraulic conductivity causes the reduction of the effective
velocity of flow and spreading of the solutes, the concentration at the downstream locations is
less and more at the upstream locations in heterogeneous case. At some locations where the mean
concentration is higher for Case 2, in comparison to Case 3, the standard deviation of concentration
is also found to be higher. In this case, the higher variance of conductivity mainly affects the mean
velocity of flow rather than the variance of velocity. Due to this, higher variance of conductivity
does not always cause the higher standard deviation of concentration. The unit response function
is affected by the local dispersion parameters, as the spreading of the solute is also controlled by
these parameters. The effect of heterogeneity on the distribution of mean and standard deviation of
concentration is similar for different local dispersion parameters. Both the mean and the standard
deviation of concentration are found to be more for Cases 4 and 5, in comparison to Cases 1 and 3.
But the standard deviation increase is relatively higher for Case 5 compared to Case 3 since lower
dispersion and diffusion coefficients are used. Though the degree of heterogeneity is kept the same
for Cases 3 and 5, the effect of spatial variability of the parameters differs due to the values of
the physical parameters. Hence, the behaviour of the stochastic unit response function is not very
simple.

Analysis is extended for assessing the probabilistic behaviour of concentration distribution in the
domain (Figure 7) due to various source conditions (Cases A – D) as mentioned in the section for
1-D problem as well as degrees of heterogeneity for Cases 1 – 5. A single realization of concentra-
tion break through curves at location P1 due to multiple random pulses for Case 3B and Case 3D
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Figure 8. The temporal behaviour of mean and standard deviation of concentration at different locations
for the 3-D problem (as shown in Figure 7) due to a unit concentration pulse in the leachate source.

are shown in Figures 9(a) and (b), respectively. Figures 10–14 present the behaviour of the mean
and standard deviation of concentration at the upstream and the downstream locations of the source
for homogeneous cases (Cases 1 and 4) and heterogeneous cases (Cases 2, 3 and 5). The mean
and the standard deviation of the concentration behaviour show a pattern of reaching a steady-state
condition, which is expected due to random multiple pulses as noted by Wang and Zheng [16]. For
Cases A and B (i.e. when the arrival time of pulses is fixed) the mean and the standard deviation of
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Figure 9. The concentration break through curve at the location P1 of a single realization.

the concentration show a fluctuating response with the same frequency of the solute mass injection.
The fluctuating pattern may not be distinguishable if the time interval of the mass injection is very
small in comparison to the spread of the temporal break through curve of concentration for a single
pulse. It has been observed that for the 1-D problem both the mean and the standard deviation in
Cases A and B are quite smooth. For the random time interval cases (i.e. Cases C and D), the mean
and the standard deviation of the concentration smoothly reach a steady state since the continuous
integration has replaced the discrete summation for uniform time interval. When the random solute
mass is injected at fixed time interval, the probability of mass injection at any instance is either
0 or 1. But for the case of random time interval the probability is a continuous function of time
which is discussed in Section 4.2. From Figure 9 it can be inferred that the ensemble average
of the break through curve for a uniform interval (Figure 9(a)) will have the same fluctuating
pattern while for the random interval case due to the process of averaging the fluctuation will be
wiped out.

For the homogeneous case (i.e. Cases 1 and 4), the second term in the expressions of covariance
of concentration (Equations (30) and (50)) vanishes. In particular, Cases 1A and 4A correspond
to the homogeneous system with a deterministic source and hence the standard deviation of the
concentration is zero. During the comparison of the mean and the standard deviations of
the concentration for Cases 1 – 3 with the random source conditions (Cases B – D), it is found
that the standard deviation for the homogeneous case (Cases 1B – 1D) is higher than the hetero-
geneous cases at some locations (P2 and P3) where the mean concentration is also quite larger
in homogeneous cases than in heterogeneous cases. This is more prominent for stronger random
source conditions (Cases C and D). It should be noted that the second term (which is related to the
covariance of the unit response function) is relatively higher for higher heterogeneity. The standard
deviation of the concentration at most of the locations is higher in Case 3A than in Case 2A. As
the relative effect of randomness of source condition is lesser with the increase in the degree of
heterogeneity of system parameters, the gap among the various random source cases (Cases A –
D) gets lesser from Case 1 to Case 3. It can be explained using the behaviours of the unit response
function in Figure 8 and comparing the terms in Equations (30) and (50). From Figure 8, it can be
found that for the parametric heterogeneity cases chosen, the area under the mean of concentration
is larger than the area under the standard deviation of concentration. At location P3 (far away in the
downstream of the source), the standard deviation is quite smaller than the mean. In both Equations
(30) and (50) the first terms are related to the mean of stochastic unit while the second terms are re-
lated to the covariance of the unit response function. For uniform time interval case (Equation (30)),
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Figure 10. The temporal behaviour of mean and standard deviation of concentration at
different locations for 3-D problems (as shown in Figure 7) of Case 1 due to various

types of random source conditions (Cases A – D).

the first term contains 	2cA and the second term contains (cA)2. Since in this study, COVcA is taken
as 0.5, both the terms are comparable and prediction uncertainty of concentration increases with
the degree of parametric heterogeneity. In the case of random time interval of the multiple source
(Poisson process), the first term contains ((cA)2+	2cA) and largely dominates over the second term.
Hence for Poisson process-type source case, the randomness in the source condition dominates
over the heterogeneity of governing system parameters. At the locations where the unit response
function is higher for homogeneous case, the standard deviation of concentration due to multiple
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Figure 11. The temporal behaviour of mean and standard deviation of concentration at
different locations for 3-D problems (as shown in Figure 7) of Case 2 due to various

types of random source conditions (Cases A – D).

pulse is lesser even for heterogeneous case. Similar effects of heterogeneity are found in the cases
with lower dispersion parameters (Cases 4 and 5) for various statistically different source conditions
(Cases A – D).

In cases of homogeneous system parameters (Cases 1 and 4), only the mean of unit response
function is affected by dispersion parameters and in these cases both mean and standard deviation

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:557–586
DOI: 10.1002/fld



SOLUTE TRANSPORT IN A HETEROGENEOUS POROUS MEDIUM WITH A RANDOM SOURCE 581

0 5 10 15
0

1

2

3

0 5 10 15
0

1

2

0 5 10 15
0

0.05

0.1

0 5 10 15
0

0.02

0.04

0.06

0.08

0 5 10 15
0

0.02

0.04

0.06

0.08

0 5 10 15
0

0.02

0.04

0 5 10 15
0

0.02

0.04

0.06

0.08

0 5 10 15
0

0.02

0.04

0 5 10 15
0

0.05

0.1

t
0 5 10 15

0

0.02

0.04

t

(a1) (b1)

(a2)

(a3)

(a4)

(a5)

(b2)

(b3)

(b4)

(b5)

Case C 
Case A Case B

Case D
Case A & B
Case C & D

σ c
σ c

σ c
σ c

σ c

Location: P1

Location: P1

Location: P2

Location: P2

Location: P3

Location: P3

Location: P4

Location: P4

Location: P5

Location: P5

c
c

c
c

c

Figure 12. The temporal behaviour of mean and standard deviation of concentration at
different locations for 3-D problems (as shown in Figure 7) of Case 3 due to various

types of random source conditions (Cases A – D).

of concentration result from the mean of unit response function. As the unit response function
is higher at locations P1 and P3 (Figures 8(a1) and (a3)), the mean as well the standard devi-
ation of concentration due to random source conditions are also higher in Case 4 than in Case
1 (as shown in Figures 10 and 13). In heterogeneous case, for different random source condi-
tions (Cases A – D) the mean concentrations in Case 5 are higher or lower at different locations
compared to Case 3. This variation in mean is similar to the mean unit response functions in
Cases 3 and 5. The standard deviation of concentration is affected by both mean and standard
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Figure 13. The temporal behaviour of mean and standard deviation of concentration at
different locations for 3-D problems (as shown in Figure 7) of Case 4 due to various

types of random source conditions (Cases A – D).

deviation of unit response function. Due to lower dispersion parameters, the standard deviation
of concentration at all locations for all types of source conditions are higher in Case 5 com-
pared to Case 3. For the deterministic source condition (Case A), the increase in the standard
deviation from Case 3 to Case 5 is higher. In this case the first terms in the expressions of
covariance (Equations (30) and (50)) are zero. For Case 5 (in comparison to Case 3), the in-
crease in the standard deviation due to stronger uncertainty in the source condition is found to be
smaller.
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Figure 14. The temporal behaviour of mean and standard deviation of concentration at
different locations for 3-D problems (as shown in Figure 7) of Case 5 due to various

types of random source conditions (Cases A – D).

6. CONCLUSIONS

A semi-analytical approach is presented for the stochastic modelling of the concentration in
a heterogeneous porous medium due to random inputs. This approach combines the analytical
expressions for the random input conditions with the numerical methods to derive the stochastic
behaviour of the unit response function. In this present study SFEM is used for the solution of
SPDEs resulting from spatial heterogeneity. For mild heterogeneity (i.e. COV�1.0) the performance
of the method is found to be good.
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The expressions derived for random input with a uniform and a random time interval indicate
that an additional term due to randomness of time interval results in the later case, which has
a significant effect on the prediction uncertainty of the concentration. This result has a practical
implication while modelling the input conditions in groundwater contamination problems.

For the same degree of heterogeneity of the random system parameters, the standard deviation
of the concentration increases with lower local dispersion parameters. Hence, the relative effect of
source and system uncertainty depends on the values of the physical parameters.

The random spatial variability of the governing system parameters affects the distribution of the
mean concentration in addition to the increase in the standard deviation. For a simple linear system,
the effect of randomness in the source is additive but this is not the case with the randomness in the
system parameters. Due to this fact the combined effects of randomness in the system parameters
and the source condition are not straightforward.

The expressions of the mean and the covariance of the concentration have been derived an-
alytically based on the stochastic unit response function for the case of a system with random
parameters. Since no approximation has been made to derive these analytical expressions, they are
exact. These are very useful for a random source condition. The errors, which have been observed
during the comparison with MCSM, are due to the approximation made in the SFEM formulation
to compute numerically the mean and the covariance of the stochastic unit response function.
The statistical moments of the stochastic unit response function can be derived by any analytical
method or any other numerical method such as the moment equation method. Any efficient and
higher-order numerical method which is capable of obtaining accurately the statistical moments of
concentration, in the heterogeneous porous media can be combined with the analytical expressions
derived for the mean and the covariance of the concentration using a stochastic unit response
function.

APPENDIX

Using a similar methodology presented for the transport problem (Section 3), the perturbation
approach can also be applied on the flow problem (Equation (8)), to obtain the mean and the
random perturbed components of the hydraulic head. In the case of the flow problem, the random
properties are only the hydraulic conductivities of the elements Kp, (p= 1, 2, . . . , N ) and hence
the mean and the random components of the hydraulic head are expressed as,

{h} =
(

[I] +
Nk∑
p=1

Nk∑
q=1

[K ]−1[K ](I)Kp
[K ]−1[K ](I)Kq

K ′
pK

′
q

)
[K ]−1{h0} (A1)

{h}′ =
Nk∑
p=1

{h}(I)Kp
K ′

p where {h}IKp
=−[K ]−1[K ](I)Kp

[K ]−1{h0} (A2)

Using (A1) and (A2) the mean and random components of the seepage flux (qip ) are written as,

qip =− 1

NG

NG∑
k=1

�Nl(x)
�xi

∣∣∣∣∣
xk

(
K phl +

Nk∑
q=1

h(I)
l,Kq

K ′
pK

′
q

)
(A3)
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q ′
i p =−

Nk∑
q=1

1

NG

NG∑
k=1

�Nl(x)
�xi

∣∣∣∣∣
xk

(hl�pq + K ph
(I)
l,Kq

)K ′
q =

Nk∑
q=1

qi
(I)
p,Kq

K ′
q (A4)

From the above expressions one can obtain the auto covariance of velocity and the cross covariance
with any other random property (r ′

j ) using the auto covariance of the hydraulic conductivity and
cross covariance of hydraulic conductivity with r ′

j , which may be given as,

q ′
i p1

q ′
j p2

=
Nk∑

q1=1

Nk∑
q2=1

qi
I
p1,Kq1

q j
I
p2,Kq2

K ′
q1K

′
q2 and q ′

i pr
′
j =

Nk∑
q=1

qi
I
p,Kq

K ′
qr

′
j (A5)
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